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Abstract

We present a new BERT compression technique for NLP
tasks that significantly reduces the number of parameters
used by the model. Our compression method uses information
from the hidden state activations of each BERT transformer
layer, which is discarded during typical BERT inference. We
achieve same accuracy as BERT across a wide variety of
GLUE benchmark tasks and SQuAD 2.0 with 209x times less
parameters needed. This suggests that the method may be
extensible to a wider range of NLP tasks.

1 Introduction

BERT has significantly advanced the state-of-the-art across
many Natural Language Processing (NLP) tasks. Given a
predefined accuracy or same level accuracy a BERT with
fewer parameters can be easily transferred and embedded in
small devices and can be suitable for real-time application
due to lower inference time. In this work we will present a
new compression technique for BERT.

Existing compression methods [19, 20, 22, 29, 37, 38, 41,
54] are largely guided by altering BERT’s architecture, ei-
ther through the training of a new, smaller network, or by
replacing or altering its modules. These efforts, dominated by
distillation methods, have indeed achieved BERT-like perfor-
mance while using significantly reduced model size, i.e. mod-
els with less parameters. Distillation architectures derive their
power from the clever use of student-teacher networks. For
example, in the case of MobileBERT [41], a custom Inverted-
Bottleneck BERT architecture (the teacher) is first pre-trained
using standard masked language modeling, and next sentence
prediction. The key here is that two types of data flow exist,
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intra-block, wider feature maps such as embeddings, that feed
in multi-headed self-attention, and inter-block, thinner feature
maps such as the output of layer norm that feed into linear
layers. The knowledge distillation step comes next, which is
a layer-by-layer transfer of knowledge from BERT to Mobile-
BERT [41], a much smaller network consisting of the same
encoder blocks, but much fewer parameters. MobileBERT
[41] is just as deep as BERT, but significantly thinner, i.e.
each block has much fewer parameters.

In this paper we present a new BERT compression tech-
nique by taking advantage of BERT’s hidden states. Our
methodology is as follows. We start by performing the stan-
dard fine-tuning of BERT to a downstream task. Then, we
train a much smaller model on top of the BERT’s hidden
states through a linear pooling layer. This layer combines
and compresses the information present in the hidden state
activations, which are normally discarded during inference.
Our model achieve the same accuracy of BERT on a wide
variety of GLUE benchmark tasks and SQuAD 2.0 with 209x
times less parameters needed. When compared to the state
of the art compression methodologies, we have 3x times less
parameters than any other existing work while keeping the
accuracy as high as BERT.

2 Related Work

Recently many BERT compression techniques have been pre-
sented [19, 41]. Compression methods, are obtained through
four general approaches today: (1) distillation, (2) quanti-
zation, (3) pruning, and (4) module replacing. Knowledge
distillation derive their power from the clever use of student-
teacher networks where, in the case of MobileBERT [41], a
custom BERT},, . architecture (the teacher) is used to train
the MobileBERT [41] over the whole duration of pre-training.
In general, distillation methods generally amount to novel
loss functions injected at the embedding, self-attention, and
hidden state layers and are found during pre-training as well
as fine-tuning. DistilBERT[37] and MobileBERT[41], for
instance, use distillation methods during pre-training [37],
while other efforts like TinyBERT [20] incorporate distilla-
tion during pre-training and fine-tuning [20, 40]. Quantiza-
tion methods aim to lower the floating point precision of
the millions of BERT’s parameters in order to reduce its
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memory and compute footprint [38, 54]. Pruning, or the
systematic exclusion of weights and layers yielding sub-
networks, is a form of model compression [7, 14, 16]. [22,
29] shows that self-attention heads and entire encoder lay-
ers can be disabled without suffering substantive drops in
performance. Among more recent innovations, researchers
have compressed BERT by replacing its large modules with
more compressed substitutes. SqueezeBERT[19], for exam-
ple, finds that the fully-connected layers attached to self-
attention and between each encoder block can be efficiently
replaced by grouped-convolutions and convolutions, respec-
tively. Separately, BERT-of-Theseus [53] sequentially sub-
stitutes BERT’s modules with modules containing fewer pa-
rameters that are learned in a manner similar to knowledge
distillation. Finally, Module addition is another mechanism
for achieving parameter efficiency during fine-tuning [17].

3 Solution

BERT-Vision’s architecture is centrally comprised of a pool-
ing module (see Algorithm 1 and Figure 1 below); a method
that applies the same linear function to each BERT layer,
yielding a learned linear combination of BERT’s hidden
states.! The consequence of this modeling decision is that it
learns from the information found across each layer [2, 44]
while compressing the number of layers of information down
to one. Our algorithm is simple to implement, runs on BERT
itself, and reduces the number of parameters involved in for-
ward and backward propagation.

Algorithm 1: BERT-Vision: Adapted for SQuAD

input :Hidden-state activations shaped:
(bs, inp, emb, depth)

LinearPooling (inp * bs,depth, emb)
GELU (inp * bs, depth, inp)

reshape: (bs, inp, inp, depth)

Linear (bs, inp, inp = depth)

Return: spang;q,: (bs, inp, depth =1)
Return: spang,q (bs, inp, depth = 1)

Our algorithm also has one notable drawback — it requires
BERT to be partially fine-tuned. This is in part necessary as
BERT-Vision is only capable of extracting and pooling in-
sights across BERT’s layers, in-so-far as it is able to generate
them relative to the task at hand. In future work, we intend to
study ways in which we can minimize the training costs as-
sociated with BERT-Vision such that it is an operation run in
parallel with BERT vice an operation ran sequential to BERT.
In comparison to state-of-the-art methods, this drawback is
absent as these models have created entirely new architectures
that supplant BERT rather than improve BERT.

'In the case of BERTpge, there are 13 layers, while in the case of
BERT 4y ge, there are 25.

4 Experiments

In this section we describe our data, experimental setup, and
model training strategy. Our experiments were performed on
two Microsoft Azure data science virtual machine with 112
GiB on-board ram and an NVIDIA Tesla TITAN series V100
Tensor Core GPU capable of 7 TFLOPS double-precision
and tensor performance of 112 TFLOPS and possessed 16
GiB on-board RAM. We evaluated the effectiveness and ef-
ficiency of BERT-Vision on two industry benchmark data
sets: The General Language Understanding Evaluation [48]
(GLUE) benchmark, and the Stanford Question Answering
data set(SQuAD) v2.0 [34]. GLUE consists of two single-
sentence tasks CoLA and SST-2, three sentence similarity
tasks MRPC, STS-B, and QQP, and four natural language in-
ference tasks MNLI, QNLI, RTE, and WNLI. WNLI is known
to be a problematic data set for BERT and was excluded from
the original study [12]. We do the same here, and instead,
replace it with SQuAD 2.0, a reading comprehension task
consisting of questions where the answer to every question is
a segment of text. As compared to SQuAD 1.1, SQuAD 2.0
contains unanswerable questions.

4.1 Experimental Pipeline

Our training pipeline follows four general steps. First, we set
the hyperparameters of our BERT 45, and BERT} 4,4 models
to settings commonly used by academia and practitioners .
Second, we tuned BERT to the task at hand leveraging hyper-
opt and 100 trials to ensure the baseline was performing as
best it could; maximizing its performance against the metric
of interest on the development data set. Third, with optimized
hyperparameters, we fine-tuned BERT against the current task
for one epoch and then wrote the full embeddings with shape
(layers, batch size, tokens, features) for the entire data set to
disk. Fourth, we then tuned BERT-Vision using hyperopt and
the same number of trials to optimize its hyperparameters
against the metric of interest on the development data set
using the emitted embeddings from the previous step. Given
tuned models and emitted embeddings, we then proceeded
with our comparative analysis experiments.

We compared the performance of our fully-tuned BERT-
Vision model to the fully-tuned BERT model on each data
set for one epoch each across the GLUE and SQuAD tasks,
using the canonical metric of interest on the development
set. While our chief comparison of interest is against BERT,
we limited the scope of this comparison to models generally
based on BERT},., while also including the state-of-the-art
(MobileBERT) and a highly related module addition model,
AdapterBERT. Against non-BERT models, we focused on
both the compression rate, as well as performance.

2github.com/pytorch/fairseq/blob/master/examples/roberta/README.glue.md
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Figure 1. BERT Vision span annotation data pipeline

5 Results

In this section, we present our results comparing BERT-Vision
against BERT across the GLUE and SQuAD data sets.

In GLUE case, we compare BERT-Vision against BERT}
and BERT}4¢, on the GLUE benchmark’s development data
sets. While there are many other state-of-the-art post-BERT
models, our primary research interest and direct comparison is
against BERT itself. In a forthcoming section, we draw com-
parisons between BERT-Vision and other state-of-the-art mod-
els that make use of varied compression techniques. The table
below shows that BERT-Vision is competitive with BERT ¢
and BERT},,4 on the GLUE benchmark, judging from our
overall GLUE score of 0.810 that beats BERT ;5. by 0.001.
Further, BERT-Visiony . is 209x smaller than BERT},,. and
n times faster. In contrast, BERT-Vision;, g falls substan-
tially short in comparison with BERT,4¢., which may be
owed to BERT-Vision’s current architecture limitations which
only allows layer pooling, thereby complicating its ability to
extract compressed regularity from 25 layers vice 13. Fur-
thermore, we find that BERT-Vision tends to perform better
on smaller data sets such as RTE. This is perhaps due to the
fact that more epochs is required to fully fine-tune BERT, a
complication that is overcome by BERT-Vision.

In a similar fashion, we compare BERT-Vision against
BERTp4s. and BERT 4,4 on the SQUAD 2.0 benchmark’s
development data set. Our results below show that BERT-
Visionp,, is competitive with BERT},,, according to the
exact and F1 metrics below, as our model beats BERT} .
by roughly half a point and a whole point respectively. With
less stark of a difference, BERT-Vision;4,¢, falls marginally

short of BERT 4,4, ’s performance. The precise reason why
BERT-Vision; 4 performs much closer to BERT ;44 in span

annotation tasks as compared to the varied tasks represented
by GLUE is unclear. However, we hypothesize that slight
architectural differences accounted for in the algorithm pseu-
docode above is perhaps responsible and is worthy of future
research.

5.1 Model Analysis

BERT-Vision outperforms BERT in some tasks but not in
others — but in which tasks and why is it scoring the way it
does? In this section, we conduct a comparative error analy-
sis across two GLUE data sets: MRPC and RTE. We chose
these data sets for three reasons: First, MRPC and RTE dif-
fer in their central task. The former represents sentence-pair
similarity while the latter represents natural language infer-
ence. Second, these two data sets also differ substantially in
the extent to which BERT can learn from the data as it is
much easier to get a high evaluation score in MRPC than
it is to get the same in RTE. Third, BERT-Visiony,.’s per-
formance against BERT},,, varies across the two tasks. On
MRPC, BERT},,. outperforms BERT-Visiony,,. while on
RTE, BERT-Visionp,s. outperforms BERT},,.. Taken col-
lectively, these two data sets provide ideal inroads into bet-
ter understanding the shortcomings and differences between
both models. Further, analyzing these two data sets may tell
us more about our architectural choices and why it is that,
through compression, BERT-Visiony,s, is able to beat the full
expressive power of BERT},,. on a challenging data set.

For the RTE data set, BERT-base predicts 67.5% of the ex-
amples to be positive, with a recall of 0.787. BERT-Vision on
the other hand predicts 44.0% of the examples to be positive,
with a recall of 0.568. Overall, the improvement in accuracy
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GLUE SQuAD-

Model MNLI QNLI QQP RTE SST MSR CoLA STS-B Average EM
BERT-base .823 .902 .896 .639 .920 .820 .534 .874 .802 .694
AdapterPooler-  .822 903 .886 726 927 .840 .600 .862 .819 .701
base

BERT-large .852 907 .896 531 929 .764 .207 .862 744 776
AdapterPooler-  .849 910 .897 .592 .929 .837 432 .880 791 .769
large

Table 1. Model Performance: BERT (base/large) vs. BERT-Vision (AP)

Research Compression Performance Base Model Evaluation
BERT-base [12] 1x 100% BERT-12 GLUE, SQuAD
BERT Vision 209x 100% BERT-12 GLUE, SQuAD
BERT-48 [55] 62x 87% BERT-12  MNLI, MRPC, SST-2
BERT-192 [55] 5.7x 93% BERT-12  MNLI, MRPC, SST-2
SqueezeBERT [19] 2.3x 96% BERT-12 GLUE
MobileBERT [41] 4.3x 100% BERT-24 GLUE, SQuAD
AdapterBERT [17] 0.8x 99% BERT-24 GLUE, SQuAD

Table 2. Comparative Performance Analysis

with BERT-Vision comes from far superior performance in
recognizing negative examples (non-entailment). BERT-base
predicts correctly only 45.0% of negative examples, while
BERT-Vision correctly predicts 70.2% of negative examples
as such. For the correctly predicted examples examples, the
average length for BERT-base and BERT-Vision were similar
for both sentence 1 and sentence 2, averaging about 42 words
for sentence 1, and 8 words for sentence 2. These are very
close to the global mean length for all examples, indicating
that neither model is performing better or worse based on
length alone. The overlap of correctly predicted examples is
45.5%, indicating that less than half of the examples both
models correctly predicted. This leads to a potential area of
improvement for BERT-Vision, which correctly predicting
more of the examples BERT gets correctly.

For the MSR data set, BERT-base predicts 69.1% of the
examples to be positive, with a recall of 0.873. BERT-Vision
on the other hand predicts 70.7% of the examples to be posi-
tive, with a recall of 0.877, a minor difference. The improve-
ment in accuracy with BERT-case comes from this and a
slightly improved performance in recognizing negative ex-
amples. BERT-base predicts correctly only 67.0% of nega-
tive examples, while BERT-Vision correctly predicts 63.9%
of negative examples as such. For the correctly predicted
examples examples, the average length for BERT-base and
BERT-Vision were similar for both sentence 1 and sentence
2, averaging about 19 words for sentence 1, and 19 words for

sentence 2. These are very close to the global mean length
for all examples, again indicating that neither model is per-
forming better or worse based on length alone. The overlap of
correctly predicted examples is 71.5%, a much larger fraction
than RTE. A comparison of performance between models can
be seen in table [2].

Table 2 reports the comparison to other high-performing
models, we find that BERT Vision is competitive, judging
from its parameter size reduction and on-average performance
across tasks.

6 Conclusion and Future Work

In this paper, we introduce a new method that compresses the
hidden state activations emitted by all encoder layers of BERT
during fine-tuning and extracts useful information typically
disregarded by researchers and end-users during inference.
Extensive experiments show that BERT Vision is a parameter
efficient approach that exceeds or achieves BERT perfor-
mance across a wide range of GLUE and SQuAD 2.0 tasks,
including question-answering, sentence similarity, and natu-
ral language inference tasks. It also shows that researchers
should pay more attention to the ways in which the fine-tuning
process may be best optimized rather than re-engineering pre-
training regimens. In future work, we intend to study ways
in which we can minimize the training costs associated with
BERT Vision such that it is an operation run in parallel with
BERT vice an operation ran sequential to BERT.
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