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Abstract
Memory Uncorrectable Errors (UEs) have been identified as a leading cause of server crashes in Microsoft Azure
datacenters. To mitigate this, leveraging machine learning methods to predict UEs before undertaking preventive
maintenance has become an effective measurement to decrease server downtime in large-scale clusters. However,
the prediction of UEs presents several challenges: (1) anomaly UEs are exceedingly rare in memory events. This
rarity renders machine learning methods highly vulnerable to imbalanced data, leading to high false positives
and low recall rates. (2) memory data is inherently noisy and heterogeneous because memory hardware comes
from a range of manufacturers (e.g., Samsung, SK-Hynix) and is deployed in diverse operational environments.
This necessitates the need for robust machine learning models. (3) Predicting UEs demands the handling of
intricate spatial and temporal variability in the memory framework, given the hardware degradation over its
lifecycle and the iterative introduction of new software and hardware configurations. To address these issues,
we proposed a Spatial-temporal Transformer in Memory (STIM) model that learns spatial and temporal features
with self-attention mechanisms across memory cells. Comparative evaluations on our developed Azure Memory
Error Dataset (AMED) reveal that our proposed STIM model outperforms existing machine learning methods
and strong baselines, which marks the significant application of Language Models (LMs) to address complex UE
prediction tasks.
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1. Introduction
Dynamic Random Access Memory (DRAM) has served as
the primary memory for data storage and retrieval in mod-
ern computer systems. A typical DRAM chip comprises
thousands of capacitors, each either charged or discharged
to denote binary bits [1]. However, these stored electric
charges are vulnerable to alteration due to various inter-
nal and external factors, e.g., unstable data transmission
along bitlines, unexpected charge losses before bit restora-
tion, significant temperature fluctuations in the operational
environment, etc. Such vulnerabilities often lead to incon-
sistencies between the bits (data) read from DRAM and
the bits (data) originally stored. To mitigate these incon-
sistencies, Error Correction Codes (ECCs) are employed
to identify and correct erroneous bits. One widely used
Chipkill ECC [2] is tailored to rectify incorrect bits from
a single DRAM chip during memory access at the cache
line granularity. These rectifiable errors are termed Cor-
rectable Errors (CEs). Nonetheless, ECCs can be ineffective

if multiple erroneous bits occur simultaneously, exceeding
the ECC’s error-correction capacity, or if certain error pat-
terns escape the ECC’s detection capabilities. In such cases,
Uncorrectable Errors (UEs) occur, potentially leading to crit-
ical system disruptions and potential security issues [3, 4, 5].
Figure 1 shows that UEs have been identified as the leading
contributors to severe cluster outrages in Microsoft Azure
datacenters.

In addressing Uncorrectable Errors (UEs) proactively, em-
ploying a method that can predictively diagnose memory er-
rors becomes crucial. This allows for the timely replacement
of memory hardware modules, such as the Dual Inline Mem-
ory Module (DIMM), preventing potential catastrophic sys-
tem failures [6]. In literature, traditional approaches mostly
learn from historical statistics of CEs to predict UEs. For in-
stance, when a DIMM records an unusually elevated amount
of CEs over a predefined period, a proactive replacement
is initiated. This practice is based on the assumption that
DIMMs with high CE rates are prone to initiating UEs [7, 8].
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Figure 1. Recent error contributions to Fleetwide AIRs that cause
cluster severe outrages in Azure datacenter.

However, such methods often yield false positives, making
them less than ideal for large-scale datacenters. To address
this issue, [9, 10] leverage micro Correctable Error (CE)
information (e.g., channel, rank, bank, row, column, etc.) to
develop advanced machine learning methods. Interestingly,
these works found that predictors based on column fault
identification exhibit superior efficacy in predicting future
UEs, which demonstrates the importance of learning spa-
tial information within memory modules. Yet, these works
often failed to take into account essential bit features that
have strong connections to UE occurrences. To bridge the
gap, [11] introduces bit CE features (e.g., DQ-beat error
bits) and a set of hierarchical predictors to reveal latent
UE patterns, which exhibits the potential to learn spatial
information through different levels of features. Despite
these advancements, the current methods mainly focus on
extracting useful features rather than developing advanced
machine learning models to capture spatio-temporal vari-
ability. While feature-driven methods excel at leveraging
effective predictors, they still struggle to learn interactions
across spatio-temporal erroneous bits (e.g., dynamic bit al-
ternation in different timeframes). In contrast, our study
presents a Spatio-temporal Transformer in Memory (STiM)
model that aims to capture the variability of these essential
spatio-temporal dynamics with an end-to-end Transformer-
based model [12]. This initiative marks the first endeavor
to employ cutting-edge language models for effectively pre-
dicting UEs.

While adapting machine learning models to UE prediction
tasks has gained unprecedented interest, it also brings major
challenges. For instance, UEs are exceedingly rare in mem-
ory events compared to CEs, which renders machine learn-
ing methods highly vulnerable to imbalanced data, leading
to high false positives and low recall rates. [10] leverages
an ensemble learning approach to eliminate the imbalance
issue, which increases model complexity and loses model
interpretability. It also shows that predictor-based methods
perform relatively well on certain datasets and inefficiently

on others. Based on this, we developed our first research
question (RQ1): Can we train an end-to-end model that
performs constantly well on multiple datasets? Predicting
UEs demands the handling of intricate spatial and temporal
variabilities in the memory framework, given the hardware
degradation over its lifecycle and the iterative introduction
of new software configurations. Prior feature-driven meth-
ods [9, 10, 11] have shown potential in learning spatial
features in UE predictions but are not sufficient to uncover
the complex variability in memory errors. Therefore, we
investigate our second research question (RQ2): Can we
train a model capable of handling spatio-temporal variability
in memory errors? Memory data (in both micro and bit) are
inherently noisy and heterogeneously distributed because
DIMMs come from a range of manufacturers that implement
different manufacturing protocols. Also, the DIMMs are
deployed in diverse operational environments with various
external interventions. This necessitates our third research
question (RQ3): How to wisely use diverse datasets to train
a better model?

To address these questions, we developed the first Azure
Memory Error Dataset (AMED) with four variants to exam-
ine the effectiveness of various UE prediction methods. We
conduct a pilot study on the state-of-the-art machine learn-
ing model and extensively evaluate our proposed strong
baselines on AMED. We demonstrate the superiority of our
proposed STiM model in solving UE prediction tasks. Our
contribution is threefold:

• We develop an automated pipeline to collect the first
large-scale real-word Azure memory error dataset that
contains micro and bit features.

• We proposed the first highly effective Transformer-
based language model for UE predictions that achieves
excellent performance on AMED.

• We address the spatio-temporal variability in memory
using an end-to-end Transformer model, avoiding the
complexities of model assembly. This ensures model
robustness when handling diverse memory errors.

2. Related Work
2.1. Memory Error Prediction

Recent research in memory error predictions has empha-
sized the use of CEs to predict UEs. [13] introduces a ma-
chine learning model that uses CEs from event and sensor
logs to predict future UEs. This work investigates a set of
techniques for handling missing data and UE anomalies but
still yields relatively high false positives. Furthermore, [9]
offers an online learning strategy that leverages micro-level
information (e.g., cells, rows, and columns on each DIMM)
to train machine learning models on large-scale field data
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Figure 2. Bitmap examples of CEs and UEs, showing strong spatial
(bit) variability across 2D-grid cells. The zero denotes no error
and the positive number denotes the number of erroneous bits in a
cell in a certain period.

from more than 30,000 contemporary servers. This method
heavily relies on UE predictors (e.g., the daily number of
cell errors) thus has low performance when observed data
is highly noisy. Later, [10] improves their prior method
by using a weighted ensemble approach that gives certain
weights to each weak classifier/predictor, which increases
the model complexity but misses the opportunity to analyze
the important spatio-temporal correlations in erroneous bits.
In addition, [14] presents a cost-aware random forest model
for UE prediction that uses features from DIMM, sockets,
and nodes. This work argues that precision and recall are
insufficient to evaluate UE prediction and proposes a cost-
benefit analysis to prevent memory error predictors less
biased which mitigates the model learning on data from re-
tired DIMMs. This confirms the challenge that memory data
has strong temporal variability due to hardware degradation,
updates, and iterations. More recently, [1] focuses on erro-
neous bits and DIMM part numbers to study the relationship
between CEs and UEs, which predicts UEs based on differ-
ent hardware manufacturers and part numbers. [11] further
investigates the latent correlations of erroneous bits during
DRAM read/write in Data Bus (DQ) and Beat. Addition-
ally, a comprehensive hierarchical framework has proved to
be useful for adapting different levels of memory recovery
techniques, ranging from the bit-level to the micro-level, to
the system-level. In contrast to our study, we further lever-
age these useful predictors to build a Transformer-based
language model to effectively learn the hidden variability
across different spatial (bits distribution on 2D grids) and
temporal (bits and predictors in different timelines) features.
Our study is the first work in the field, aiming to solve the
UE prediction task with language models, which opens a
new avenue for UE predictions, or even broader hardware
error defections.

2.2. Deep Learning Methods

Recently, deep learning methods have gained unprecedented
prevalence in Natural Language Processing (NLP) [15, 16].
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Figure 3. Moving-window-based dataset construction. The obser-
vation window collects the micro-level and bit-level features from
the data point that has no UEs in the past 3 days. The predic-
tion window collects the memory error labels (CEs/UEs) for the
DIMMs presented in the observation window

For example, Long Short-Term Memory (LSTM) models
[17] have been trained to solve multiple downstream NLP
tasks [18]. Although LSTMs have bidirectional versions that
look forward and backward in the input sequences, it is still
insufficient to take advantage of both contexts simultane-
ously, making its ability to understand sequence content lim-
ited. To improve this, [19] proposes the Transformer model
which is the first transduction model relying entirely on self-
attention to compute representations of inputs and outputs
without using sequence-aligned LSTMs or convolutions.
Previous work leverages Transformer-based methods to con-
duct classification in computer vision and NLP [20, 21], and
achieved excellent results; however, there is no prior work,
to the best of our knowledge, that employs Transformer-
based models to hardware-related anomaly detection tasks
(e.g., UE predictions) because hardware (memory) data is
often domain-specific, complex, and dataset scarcity. Also,
the extremely unbalanced CEs and UEs distributions in the
UE prediction task, make it challenging to train large-scale
deep learning models. To bridge these gaps, we developed
the first Azure Memory Error Dataset (AMED) with four
variants for UE predictions. Nevertheless, directly applying
text-based NLP models to solve UE prediction tasks may
not yield good performance as the memory data are all nu-
merical and have no interpretable dependency and relations.
Instead, memory bits exhibit strong spatio-temporal variabil-
ity across different hardware (DIMMs) where the bits (0 or
1) on 2D-grid cells are frequently altered to exhibit different
data. Therefore, we initiate the first study, inspired by [12],
to use memory bits to train a Spatio-temporal Transformer
in Memory (STIM) model for UE predictions.

3. Dataset
Presently, there is no large-scale dataset for UE predictions
publically available for two reasons. First, memory data
collection directly relies on cloud server providers who own
large-scale computing clusters but the others such as aca-



Year-month UEs CEs Total

2022-10 226 12,958 13,184
2022-11 152 13,271 13,423
2022-12 93 14,040 14,133
2023-01 120 14,110 14,230
2023-02 104 12,556 12,660
2023-03 103 13,467 13,570

Table 1. UE and CE distributions in each month

demic researchers have no access to data sources. Second,
the memory data contains sensitive privacy (e.g., server run-
ning time) that has confidential business values and cannot
be released to the public. As a result, we curated the first
Azure Memory Error Dataset (AMED) pulled from Win-
dows Hardware Error Architecture (WHEA)1 and Azure
Virtual Machine (VM)2 logs between October 2022 and
March 2023. The raw data contains a set of micro-level
(e.g., error-count, error-type, failed-pages, devices, banks,
locations, running time, etc.) and bit-level (8x4 bitmaps
decoded from fail masks obtained by ECC) memory fea-
tures. Figure 2 shows examples of different bitmap features
that have various error-bit layouts. These bits exhibit strong
spatial variability across cells on an 2D grid. Furthermore,
we simply perform a data aggregate that sums up all the
data points (bitmaps and micro-level features) in a one-hour
window, given continuously recorded event logs on every
DIMM. This aggregation can smooth out anomalies or fluc-
tuations in the raw data. In practice, we collect aggregated
data for hundreds of thousands of DIMMs deployed on dif-
ferent clusters for consecutive 6 months. Statistically, there
are 798 UEs and 80,402 CEs where UEs take 0.98% and
CEs take 99.02% out of total 81,200 memory errors. Table 1
shows the distributions of UEs and CEs in each month in
the dataset.

Following [11], we create an observation window and a pre-
diction window (shown in Figure 3) to construct AMED. In
particular, we take the past 3 days (t− 3) as an observation
window where we filter out the data points that have no
UEs, and then we collect their micro-level and bit-level fea-
tures. We take the next 2 days (t+2) as a prediction window
where we collect the memory error labels (CEs/UEs) for cor-
responding data points presented in the observation window.
To this end, we have features and labels for each DIMM
at timestamp t. Next, we shift 1 day forward to construct
another feature-label pair for each DIMM until the end of
the collecting period. In this setting, the model trained on
the observation window (t− 3) at timestamp t can literally
predict UEs in the coming two days (t+ 2). In addition, we

1https://learn.microsoft.com/en-us/
windows-hardware/drivers/whea/

2https://azure.microsoft.com/en-us/
products/virtual-machines

Dataset Training Develop Test

Dataset-A 10/1/22 - 2/15/23 2/16/23 - 2/28/23 3/1/23 - 3/31/23
Dataset-B 11/1/22 - 2/15/23 2/16/23 - 2/28/23 3/1/23 - 3/31/23
Dataset-C 12/1/22 - 2/15/23 2/16/23 - 2/28/23 3/1/23 - 3/31/23
Dataset-D 12/1/22 - 2/28/23 12/1/22 - 2/28/23 3/1/23 - 3/31/23

Table 2. Dataset-A, Dataset-B, Dataset-C, and Dataset-D have dif-
ferent data splits in training and development sets.

develop four variants of AMED by differently splitting the
dataset into training, developing, and test sets. As shown in
Table 2, Dataset-A, Dataset-B, and Dataset-C have different
time windows in training sets but the same in development
and test sets. This design aims to help train models with the
data in different time windows which amplifies temporal
variability in AMED. Dataset-D which splits the training
and development sets in the same time window is another
variant used to (compare to dataset-C) investigate how to
optimize training and develop sets splits in order to better
fine-tune model parameters.

4. Methods
4.1. Preliminary

An overview of the framework is shown in Figure 4. The
framework contains a data collection, bitmap and micro
features, a Transformer encoder, and an MLP classifier.
In the data collection phase, WHEA logs are extracted,
transformed, and loaded into hourly aggregated data that
are combined with VM logs. Given a very sparse p × q
bitmap Si at (hourly) timestamp i, where p is the row num-
ber and q is the column number, we can flatten S(i) into
a 1-dimensional vector S′(i), where S′(i) ∈ Rpq×1. In
order to leverage micro features G(i) ∈ Rr×1 at times-
tamp i, where r is the dimension of micro features, we
concatenate S′(i) and G(i) into a memory feature vector
X(i) = [S′(i);G(i)], where X(i) ∈ Rm×1, m = pq + r. In
an observation window, we take a sequence of the memory
features X = [X(1), X(2), ..., X(t)], where t is the length
of the feature sequence (e.g., size of the t-hour window),
X ∈ Rm×t. To this end, the inputs X contain m features
in t-size observation window, where t = 72 for t = 72
hours (3 days) and m = 39 features (p = 8, q = 4, r = 7).
Therefore, the UE prediction task is formulated as using X
to predict binary labels y for UE predictions.

4.2. Spatio-Temporal Transformer in Memory

Given that the Transformer [19] uses a constant latent vector
with size d throughout all of its layers, we map X into latent
memory features X̃ ∈ Rd×t d dimensions with a trainable
linear projection (Eq. 1). The output of the linear projection

https://learn.microsoft.com/en-us/windows-hardware/drivers/whea/
https://learn.microsoft.com/en-us/windows-hardware/drivers/whea/
https://azure.microsoft.com/en-us/products/virtual-machines
https://azure.microsoft.com/en-us/products/virtual-machines
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Figure 4. We collect data from WHEA and VM logs, including bit and micro-level features. The 8x4 bitmap is flattened to a 32-bit vector
that is concatenated with 7 micro-level features. We feed a sequence of feature vectors (39 dimensions) to a standard Transformer encoder.
In order to perform classification, we feed the first feature representation on the last layer of the Transformer encoder to a linear classifier.

X̃ is fed to the Transformer encoder.

X̃ = XW. (1)

We used a similar Transformer encoder architecture to [12].
In the framework, the encoder is composed of a stack of L
identical layers, where each layer has two major blocks.

The first one is a self-attention block (SAB) in Eq. 4.

[q,k,v] = X̃Uqkv, (2)

A = softmax

(
qk⊤
√
D

)
, (3)

SAB(X̃) = Av, (4)

where the Uqkv ∈ R3d×t projects each memory feature
representation X̃ to query vector q ∈ Rd×t, key vector
k ∈ Rd×t, and value vector v ∈ Rd×t. The dot products
performed between queries (q) and keys (k) are scaled by
a scalar

√
d, passing to a Softmax function [22] to obtain

attention scores A. The attention scores are used to multiply
values (v) so the memory feature X̃ is weighed.

The second block transforms the weighted X̃ using a Multi-
Layer Perceptron (MLP), where the GELU [23] activation
function and (0.5) dropout was used. In addition, a layer
normalization is applied before the SAB and MLP block,
and residual connections after the two blocks [24, 25]. The
overall Transformer encoder is formulated as

X̃′
l−1 = SAB

(
Norms

(
X̃l−1

))
+ X̃l−1, (5)

X̃l = MLP
(
Norms

(
X̃′

l−1

))
+ X̃′

l−1, (6)

where l = 0, 1, 2, ..., L is the layer number. Each encoder
layer l uses the output of the encoder from the previous layer
X̃l−1. Following [26], the output of the last layer (layer L)
of the Transformer encoder is a sequence of memory feature
representations in a n-size observation window. We take the
first representation X̃i

L at (hourly) timestamp i = 0 as the is
taken as the input of the MLP classifier. The MLP classifier
used to predict UEs and CEs is implemented with a linear
layer and a Sigmoid function [27].

ŷ = MLP
(
X̃0

L

)
, (7)

where ŷ is the prediction. We use binary cross-validation
loss to train our model, which is described as

Loss(y, ŷ) = −y log(ŷ)− (1− y) log(1− ŷ) (8)

where y is the ground truth label for UE predictions.

4.3. Proposed Deep Learning Baselines

In the literature, the state-of-the-art UE prediction meth-
ods mainly focus on extracting useful predictors and ap-
plying boosting-based classifiers with the extracted fea-
tures [1, 9, 11, 28]. However, these traditional machine
learning methods often require complex feature engineering
and are also inefficient in handling intricate data complex-
ity. In comparison to traditional machine learning methods,
prior works have demonstrated that deep learning methods
have great superiority in solving image classification [29],
text classification [30], network intrusion detection [31],



Dataset Models Precision Recall F1-score AUC AP MCC

Dataset-A

BiGRU 0.7612 0.4951 0.6000 0.9349 0.5849 0.6116
BiGRU-CNN 0.6988 0.5631 0.6237 0.9153 0.6325 0.6248
BiGRU-ATT 0.6897 0.5825 0.6316 0.9483 0.6215 0.6313

BiGRU-CNN-ATT 0.7432 0.5340 0.6215 0.9302 0.5876 0.6276
STIM (Ours) 0.7917 0.5534 0.6514 0.9425 0.6504 0.6598

Dataset-B

BiGRU 0.6105 0.5631 0.5859 0.9089 0.5492 0.5833
BiGRU-CNN 0.7324 0.5049 0.5977 0.8628 0.5337 0.6057
BiGRU-ATT 0.6022 0.5437 0.5714 0.9219 0.5579 0.5691

BiGRU-CNN-ATT 0.7121 0.4563 0.5562 0.8841 0.5235 0.5675
STIM (Ours) 0.8133 0.5922 0.6854 0.9543 0.6582 0.6921

Dataset-C

BiGRU 0.7361 0.5146 0.6057 0.8413 0.5335 0.6131
BiGRU-CNN 0.6197 0.4272 0.5057 0.8693 0.5022 0.5115
BiGRU-ATT 0.7910 0.5146 0.6235 0.8877 0.5545 0.6359

BiGRU-CNN-ATT 0.6962 0.5340 0.6044 0.9159 0.5651 0.6071
STIM (Ours) 0.8750 0.5437 0.6707 0.9257 0.6340 0.6880

Dataset-D

BiGRU 0.9348 0.4175 0.5772 0.9193 0.6352 0.6230
BiGRU-CNN 0.8596 0.4757 0.6125 0.8850 0.5949 0.6376
BiGRU-ATT 0.7714 0.5243 0.6243 0.9126 0.5800 0.6337

BiGRU-CNN-ATT 0.8182 0.5243 0.6391 0.9385 0.6542 0.6529
STIM (Ours) 0.9077 0.5728 0.7024 0.9361 0.6601 0.7195

Table 3. The performance of the proposed strong baselines and STIM models. Note that the precision, recall, and F1-score are the scores
for the (minority) positive labels. AUC, AP, and MCC denote ROCAUC, Average Precision (AP), and Matthews Correlation Coefficient,
respectively. Our proposed STIM almost outperforms all the baselines across different metrics and different datasets.

cybersecurity [32], hard disk driver failure prediction [33],
etc. This is because deep learning methods have a stronger
capability of handling complex sequential (temporal) and
hierarchical (spatial) data, which are also two key charac-
teristics of memory data. In our pilot study, we employed
XGBoost [34] to train a classifier for the UE prediction on
AMED (Dataset-A), and obtained 0.19 precision, 0.26 re-
call, and 0.22 F1 score, respectively, which are very poor.
Therefore, our main interest in this work remains in deep
learning methods. Because there is no prior work, to the
best of our knowledge, utilizing deep learning methods in
UE predictions, we propose four strong baselines as follows.

BiGRU: The conventional Recurrent Neural Networks
(RNNs) are specifically designed to handle sequence data,
making them suitable for tasks like time series forecasting
and NLP tasks [17]. The Gated Recurrent Unit [35] is an
advanced version of the RNN which is lighter and capa-
ble of handling longer sequences. In our implementation,
we use Bidirectional GRU (BiGRU) [36] that can capture
past (left-side) and future (right-side) information simulta-
neously for a given point in a sequence. This is particularly
useful for tasks where context from both sides is crucial for
understanding the current data point. Given the input gate
i, forget gate f , and output gate o that determine whether
the incoming data should be retained or forgotten, the hid-
den state h⃗(t) at timestamp t for the forward direction is
described as:

i(t) = σ
(
WXiX

(t) +Whih
(t−1) +Wcic

(t−1) + bi
)

(9)

f (t) = σ
(
WXfX

(t) +Whfh
(t−1) +Wcfc

(t−1) + bf
)

(10)

c(t) = ftc
(t−1)+it tanh

(
WXcX

(t) +Whch
(t−1) + bc

)
(11)

o(t) = σ
(
WXoX

(t) +Whoh
(t−1) +Wcoct + bo

)
(12)

h⃗(t) = o(t) tanh (ct) (13)

where X(i denotes the memory feature at timestamp i, σ
denotes the Sigmoid function, c is the cell state, W is the
weight matrix, b is the bias term. At the same time, the
hidden state ⃗h(i) for the backward direction can also be
obtained accordingly. The forward and backward hidden
states are then combined h = h⃗∥ ⃗h for every timestamp.
The hidden state h is later fed to a linear classifier for UE
predictions.

BiGRU-CNN: Although BiGRU is able to learn sequential
(temporal) information for UE predictions, the spatial vari-
ability (e.g., erroneous bits on the bitmap in Figure 2) is
not handled. Thus we use a simple Convolutional Neural
Network (CNN) to learn the spatial relations on the bitmap.
Inspired by [1] that used indicators at the level of a row and
a column to learn the spatial information, we design a 1D
(p-dimension) row-kernel and 1D (q-dimension) column-
kernel to perform row and convolutions, respectively. The
CNN-extracted row and column (convolutional) features
are flattened into a 1D vector S

(i)
c ∈ Rk×1 (k = 32).

Furthermore, we concatenate the spatial vector extracted
from CNN, the original flattened bitmap, and micro fea-
tures into a new feature vector X(i)

c =
[
S
(i)
c ;S′(i);G(i)

]
∈



R(k+m)×1 at timestamp i in the given observation win-
dow. To this end, the spatial features are learned inten-
sively. Afterward, a sequence of spatial-enhanced features
Xc =

[
X

(1)
c ,X

(2)
c , . . . ,X

(t)
c

]
∈ R(k+m)×t are fed to a Bi-

GRU model and the output of the BiGRU is fed to a linear
classifier for UE predictions.

BiGRU-ATT: BiGRU can learn the interactions between se-
quences but cannot learn their importance. Thus the BiGRU
may learn unnecessary information but ignore useful infor-
mation in the input sequence. To address this issue, [37]
proposed an Attention-based Bidirectional Long short-term
memory (BiLSTM-ATT) that applies an attention layer to
the top of the BiLSTM model. In our implementation, we
added an attention layer to the BiGRU (BiGRU-ATT) model.
In particular, an attention block that contains several dense
layers and a Softmax layer is applied to learn the attention
α for each hidden state h(t) at time step t

αt = Softmax (Watt · ht + batt) (14)

where Watt and batt are attention weight and bias, respec-
tively. So, the aggregated attention α and hidden state h
over all the time steps are fed to a linear classifier for UE
predictions.

BiGRU-CNN-ATT: This baseline combines the BiGRU
and CNN convolutions and attention layers into one end-
to-end model. In particular, the spatially enhanced features
extracted from a row-kernel and column-kernel in a CNN
model are flattened into S

(i)
c , and then concatenated with

the original flattened bitmap and micro features X
(i)
c at

timestamp i. Afterward, a sequence of spatial-enhanced
features Xc is fed to a BiGRU model, followed by a linear
classifier for UE predictions.

5. Experiments and Analysis
5.1. Implementation Details

In the data preprocessing, we develop a set of rules to clean
the WHEA and VM log data, such as removing missing
values, etc. We conducted extensive experiments on the
sizes of the observation window and prediction window. We
found that the UEs have the most correlation to the CEs
in the past 3 days and setting the prediction window to 2
days meets our needs. We implement all the models with
Pytorch3. We train the BiGRU, CNN-aided modules, Trans-
former that uses one self-attention block, and a binary linear
classifier from scratch on an Nvidia V100 GPU. All the
models use the same cross-entropy loss, the 64 batch size,
and the 0.0003 learning rate with 0.05 decay every 10 out of
a total of 60 epochs. We tune the model hyper-parameters
on the development set and report the test set performance

3https://pytorch.org/

Figure 5. The precision-recall curve for each model on each dataset.
The upper left is Dataset-A, the upper right is Dataset-B, the lower-
left is Dataset-C, and the lower-right is Dataset-D.

using the best model. We report the (minority) positive-label
Precision, Recall, F1-scores, AUC of ROC scores that are
often used in anomaly detection tasks [38], the Average Pre-
cision (AP) [39] that summarizes a precision-recall curve as
the weighted mean of precisions achieved at each threshold,
and Matthews Correlation Coefficient (MCC) [40] that takes
into account true and false positives and negatives and is
generally used even if the labels are very unbalanced.

5.2. Qualitative Analysis

In our pilot study (indicated in Sec. 4.3), the state-of-the-
art methods focus on predictor extraction and applying
boosting-based models to classify UE predictions. Our
implemented XG-Boost classifiers achieve 0.19 precision,
0.26 recall, and 0.22 F1-scores, respectively on Dataset-A,
which is much poorer than our strong baselines (in Table
3). Nevertheless, our proposed STIM model shows con-
stant superiority over strong baselines on the Dataset-A,
Dataset-B, and Dataset-C. Note that if a recall for the (mi-
nority) anomaly label is over 0.5, the model will be favored
in practice given the extremely unbalanced dataset (0.98%
UE labels), thus our proposed methods, including baselines
and STIM, are highly effective. In addition, we observe
that the STIM has increased performance when training on
Dataset-A, Dataset-B, and Dataset-C, respectively, given
these datasets only have different training slits but the same
development and test sets. This finding indicates that train-
ing the model with the most recent (new) data is better than
training the model with old datasets that are even larger. It
answers our RQ1 that we can train an end-to-end STIM
model that performs well on all the datasets while the best
model would be the one trained with the most recent data.
It also demonstrates RQ2 that the model can handle spatio-

https://pytorch.org/


Figure 6. The F1 scores with respect to different thresholds on the
Dataset-A (upper left), Dataset-B (upper right), Dataset-C (lower
left), and Dataset-D (lower-right).

temporal variability even training on data collected from
different time windows. In comparison between Dataset-
C and Dataset-D, the differences are that the training and
development set in Dataset-D share the same time window
but not in Dataset-C (Table 2). We observe that the perfor-
mance in Dataset-D for the BiGRU-CNN-ATT and STIM
models are generally better than those of Dataset-C, which
answers our RQ3 that having the training and development
set sharing the same time window can help the models learn
better hyper-parameters. In terms of other metrics, our pro-
posed STIM model is constantly better than all the baselines
except the ROCAUC scores on Dataset-D. We argue this is
because STIM can not only learn extremely rare UE well
but also learn the majority CE well.

5.3. Quantitative Analysis

We plot the precision-recall curve in Figure 5. The perfor-
mance of most baseline models is close on all the datasets,
where STIM is evidently better than the others. There is a
significant fluctuation near the zero-recall regions in Dataset-
A, Dataset-B, and Dataset-C, which is because these datasets
are extremely unbalanced so none of the positive (UEs) are
correctly predicted by most of the models. However, this is
not observed in the Dataset-D, where the training set and
development set have the same time window (Table 2). This
finding indicates that the data-splitting strategy in spatio-
temporal datasets may also influence the model performance.
In Dataset-D, the baselines and STIM models all perform
well, where STIM is better than the other baselines when
recall is less than 0.6, but not competitive when the recall
is greater. The precisions dramatically drop when the recall
exceeds 0.6, which means the false positive goes high after a
certain threshold. Hence, we further analyze how the thresh-

Figure 7. The memory features with high temporal (row) and spa-
tial (column) variability are shown in the upper row, where the
non-colors mean the values in the cell are close to 0, the deeper
the greens the higher the values in the cell. The lower row is the
attention map learned in the STIM model, where the deeper the
reds the higher the (normalized) attention scores in corresponding
positions. We observe the attention scores match the spatial (col-
umn) and temporal (row) locations of erroneous memory features,
which suggests the STIM model can learn feature importance well.

olds influence the F1 score performance in Figure 6, which
shows the F1 score changes with respect to different thresh-
olds in all four datasets. We observe that the F1 scores of
the baseline models do not change much when the threshold
is in the range between 0.3 to 0.7 but our STIM model has
slightly higher sensitivity. In other words, our STIM model
can be tuned to achieve even better F1 scores. In terms of
attention mechanism in the STIM model, Figure 7 shows
the input memory features X ∈ Rm×t and their correspond-
ing learned attention scores. We observe that the attention
score is in line with the spatial and temporal locations on
the feature map, which demonstrates that the STIM model
does learn the importance of the input features.

6. Conclusion and Future Work
In Microsoft Azure datacenters, server crashes are predomi-
nantly caused by Memory Uncorrectable Errors (UEs). To
address this, various machine learning methods have been
employed to predict UEs in order to facilitate efficient main-
tenance and reduce server downtimes. However, predicting
UEs is rather challenging due to data variability across spa-
tial and temporal dimensions. To tackle this challenge, we
propose the first Spatial-temporal Transformer in Memory
(STIM) model for UE predictions, leveraging self-attention
mechanisms to learn the importance of the input features.
The performance evaluations on four variants of our devel-
oped Azure Memory Error Dataset (AMED) demonstrate
that our proposed STIM model is greatly superior to existing
state-of-the-art methods and strong baselines. Our results
highlighted the potential of Language Models (LMs) in han-
dling complex UE prediction tasks. In our future work, we
intend to collect additional data from the Microsoft System
Event Log (SEL) to evaluate the effectiveness of STIM. We



also aim to extend our approach to other hardware-centric
tasks (e.g., predicting disk failures and CPU errors) to en-
hance server performance within the Azure datacenter.
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